Direct imaging of radionuclide-produced electrons and positrons with an ultrathin phosphor.
نویسندگان
چکیده
UNLABELLED Current electron detectors are either unable to image in vivo or lack sufficient spatial resolution because of electron scattering in thick detector materials. This study was aimed at developing a sensitive high-resolution system capable of detecting electron-emitting isotopes in vivo. METHODS The system uses a lens-coupled charge-coupled-device camera to capture the scintillation light excited by an electron-emitting object near an ultrathin phosphor. The spatial resolution and sensitivity of the system were measured with a 3.7-kBq (90)Y/(90)Sr beta-source and a 70-microm resin bead labeled with (99m)Tc. Finally, we imaged the (99m)Tc-pertechnetate concentration in the mandibular gland of a mouse in vivo. RESULTS Useful images were obtained with only a few hundred emitted beta particles from the (90)Y/(90)Sr source or conversion electrons from the (99m)Tc bead source. The in vivo image showed a clear profile of the mandibular gland and many fine details with exposures of as low as 30 s. All measurements were consistent with a spatial resolution of about 50 microm, corresponding to 2.5 detector pixels with the current camera. CONCLUSION Our new electron-imaging system can image electron-emitting isotope distributions at high resolution and sensitivity. The system is useful for in vivo imaging of small animals and small, exposed regions on humans. The ability to image beta particles, positrons, and conversion electrons makes the system applicable to most isotopes.
منابع مشابه
Antiproton, positron, and electron imaging with a microchannel plate/phosphor detector.
A microchannel plate (MCP)/phosphor screen assembly has been used to destructively measure the radial profile of cold, confined antiprotons, electrons, and positrons in the ALPHA experiment, with the goal of using these trapped particles for antihydrogen creation and confinement. The response of the MCP to low energy (10-200 eV, <1 eV spread) antiproton extractions is compared to that of electr...
متن کاملEvaluation of cellular S-value of auger electrons emitting 111In radionuclide by Geant4 and its comparison with MCNP5 Monte Carlo codes and MIRD published data
Introduction: Now day Ionizing radiation has found increasing applications in cancer treatment. However, in the treatment different kinds and size of tumors especially metastatic and small size tumors, conventional methods of external radiation therapy are not common. In radionuclide therapy, the use of monoclonal antibodies has made it possible to achieve maximum dose to small size tumor and m...
متن کاملCalculation of Positron Distribution in the Presence of a Uniform Magnetic Field for the Improvement of Positron Emission Tomography (PET) Imaging Using GEANT4 Toolkit
Introduction Range and diffusion of positron-emitting radiopharmaceuticals are important parameters for image resolution in positron emission tomography (PET). In this study, GEANT4 toolkit was applied to study positron diffusion in soft tissues with and without a magnetic field for six commonly used isotopes in PET imaging including 11C, 13N, 15O, 18F, 68Ga, and 82Rb. Materials and Methods GEA...
متن کاملSynthesis and characterization of Gd2O2 S: Tb3+ phosphor powder for X-ray imaging detectors
Gadolinium oxysulfide phosphor doped with trivalent terbium have been synthesized using urea homogenous precipitation and followed by sulfurization at 800 °C under argon atmosphere. Structural and morphological of synthesized phosphor powder were characterized by x-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectrometry (FT-IR). Hexagonal structure ...
متن کاملElectron backscatter diffraction (EBSD) in the SEM: applications to microstructures in minerals and rocks and recent technological advancements
Electron backscatter diffraction (EBSD) is based on the principle that a beam of electrons generated in the scanning electron microscope (SEM) is the source of randomly scattered electrons in a specimen. The backscattered electrons (BSE) that escape the sample generate a Kikuchi pattern on a phosphor screen, which is linked to the specimen crystal structure. Different crystal orientations gener...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of nuclear medicine : official publication, Society of Nuclear Medicine
دوره 49 7 شماره
صفحات -
تاریخ انتشار 2008